
Week 8 - Monday

 What did we talk about last time?
 Allocating multidimensional arrays
 Memory allocation from the system perspective
 Random numbers

...One had always assumed there would be no particular difficulty
in getting programs right. I can remember the exact instant in
time at which it dawned on me that a great part of my future life
would be spent finding mistakes in my own programs.

Maurice Wilkes
Father of EDSAC
The first fully operational computer with its own memory

 Dynamically allocate an 8 × 8 array of char values
 Loop through each element in the array
 With 1/8 probability, put a 'Q' in the element, representing a queen
 Otherwise, put a ' ' (space) in the element

 Print out the resulting chessboard
 Use | and – to mark rows and columns

 Print out whether or not there are queens that can attack each
other

 A time-honored technique for debugging is inserting print
statements into the code

int i = 0;
int count = 0;
for (i = 1 ; i <= 100; ++i); // Mistake
{

printf ("i: %d\n", i); // See what's up
count += i;

}
printf ("%d\n", count);

 Using print statements can be a useful technique
 However
 Be sure not to actually change the state of the program with an i++

or other assignment inside the printf()
 It may not be available in some GUI programs or in deep systems

programming
 It might mess up the output of your program
 Remember to remove your debug statements before turning in your

code

 It turns out that there are two kinds of output to the terminal
 stdout (where everything has gone so far)
 stderr (which also goes to the screen, but can be redirected to

a different place)
 The easiest way to use stderr is with fprintf(), which

can specify where to print stuff

fprintf (stderr, "Going to stderr!\n");
printf ("Going to stdout!\n");

 When you redirect stdout, stderr still goes to the screen

 This will be incredibly useful for debugging Project 4
 If you want to redirect stderr to a file, you can do that as

well with 2>

./program > out.file
This stderr output still shows up.

./program > out.file 2> error.log

 Whether using stderr or stdout, it's critical that you use a
newline (\n) to flush your output
 Otherwise, the program crash might happen before your output is

seen
 printf() uses a buffer, but the newline guarantees that the

output will be put on screen

int* pointer = NULL;
printf ("Made it here!"); // Not printed
*pointer = 42; // Crash!

 GDB (the GNU Debugger) is a debugger available on Linux
and Unix systems

 It is a command line utility, but it still has almost all the power
that the IntelliJ debugger does:
 Setting breakpoints
 Stepping through lines of code
 Examining the values of variables at run time

 It supports C, C++, Objective-C, Java, and other languages

 C doesn't run in a virtual machine
 To use GDB, you have to compile your program in a way that

adds special debugging information to the executable
 To do so, add the -ggdb flag to your compilation

 Note: You will not need to do this on this week's lab

gcc –ggdb program.c –o program

 GDB can step through lines of source code, but it cannot
magically reconstruct the source from the file

 If you want to step through lines of code, you need to have
the source code file in the same directory as the executable
where you're running GDB

 The easiest way to run GDB is to have it start up a program
 Assuming your executable is called program, you might do it like

this:

 It is also possible to attach GDB to a program that is running
already, but you have to know its PID

 You can also run GDB on a program that has died, using the core
file (which is why they exist)

gdb ./program

Command Shortcut Description

run r Start the program running

list 135 l List the code near line 135

list function l List the code near the start of function()

print variable p Print the value of an expression

backtrace bt List a stack trace

break 29 b Set a breakpoint on line 29

break function b Set a breakpoint at the start of function()

continue c Start running again after stopping at a breakpoint

next n Execute next line of code, skipping over a function

step s Execute next line of code, stepping into a function

quit q Quit using GDB

 Set breakpoints before running the code
 The print command is absurdly powerful
 You can type print x = 10, and it will set the value of x to 10
 This kind of manipulation will be key to solving the next lab

 For more information, use the help command in GDB
 You can also list your breakpoints by typing info
breakpoints

 A struct in C is:
 A collection of one or more variables
 Possibly of different types
 Grouped together for convenient handling.

 They were called records in Pascal
 They have similarities to classes in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files

struct name
{

type1 member1;
type2 member2;
type3 member3;
...

};

 Some data is naturally grouped together
 For example, a roster of students where each student has a

name, GPA, ID number
 You could keep an array of strings, double values, and int

values that corresponded to each other
 But then sorting by GPA would mean moving values in three

different arrays
 Also, we'll need structs for linked lists and trees

 In Java, a struct-like class would be used to group some data
conveniently

 Examples:

public class Point
{

private double x;
private double y;
// Constructor
// Methods

}

public class Student
{

private String name;
private double GPA;
private int ID;
// Constructor
// Methods

}

A class to hold a point in space A class to hold student data

 The C equivalents are similar
 Just remember to put a semicolon after the struct declaration

 A string can either be a char* (the memory for it is allocated elsewhere)
or a char array with a maximum size

 Examples:

struct point
{

double x;
double y;

};

struct student
{

char name[100];
double GPA;
int ID;

};

A struct to hold a point in space A struct to hold student data

 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first!

struct student bob;
struct student jameel;
struct point start;
struct point end;

 Once you have a struct variable, you can access its members
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);

 More on structs
 String to integer conversion

 Keep working on Project 4
 Read K&R chapter 6

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Example
	Debugging
	printf() debugging
	Problems with printf()
	Another approach
	Redirecting streams
	Newline
	GDB
	GDB
	Prerequisites
	Source code
	Starting GDB
	Basic GDB commands
	GDB tips
	Structs
	Structs
	Anatomy of a struct
	Why should we bother?
	Java examples
	C examples
	Declaring a struct variable
	Accessing members of a struct
	Upcoming
	Next time…
	Reminders

