Week 8 - Monday

COMP 2400

= What did we talk about last time?

= Allocating multidimensional arrays

= Memory allocation from the system perspective
= Random numbers

Questions?

Project 4

...One had always assumed there would be no particular difficulty
in getting programs right. | can remember the exact instant in
time at which it dawned on me that a great part of my future life
would be spent finding mistakes in my own programs.

Maurice Wilkes

Father of EDSAC
The first fully operational computer with its own memory

Dynamically allocate an 8 x 8 array of char values
Loop through each elementin the array

= With 1/8 probability, puta 'Q"' in the element, representing a queen

= Otherwise, puta ' ' (space)inthe element
Print out the resulting chessboard
= Use | and — to mark rows and columns

Print out whether or not there are queens that can attack each
other

Debugging

printf () debugging

A time-honored technique for debugging is inserting print
statements into the code

int 1 = 0;

int count = 0;

for (i =1 ; i <= 100; ++i); // Mistake

{
printf ("i: %d\n", i); // See what's up
count += 1;

}

printf ("%d\n", count);

= Using print statements can be a useful technique
= However

Be sure not to actually change the state of the program with an i++
or other assignment inside the print£ ()

t may not be available in some GUI programs or in deep systems
pDrogramming

t might mess up the output of your program

Remember to remove your debug statements before turning in your
code

= |t turns out that there are two kinds of output to the terminal

= stdout (where everything has gone so far)
= stderr (which also goes to the screen, but can be redirected to
a different place)

= The easiest way to use stderr is with fprint£ (), which
can specify where to print stuff

fprintf (stderr, "Going to stderr!\n");
printf ("Going to stdout!\n");

= When you redirect stdout, stderr still goes to the screen

./program > out.file
This stderr output still shows up.

= This will be incredibly useful for debugging Project 4
= [f you want to redirect stderr to afile, you can do that as
well with 2>

./program > out.file 2> error.log

= Whether using stderr or stdout, it's critical that you use a
newline (\n) to flush your output

= Otherwise, the program crash might happen before your out
seen

= printf£ () uses a buffer, but the newline guaranteest
output will be put on screen

out Is

nat the

int* pointer NULL;
printf ("Made it here!"); // Not printed
*pointer = 42; // Crash!

= GDB (the GNU Debugger) is a debugger available on Linux
and Unix systems

= |[tis a command line utility, but it still has almost all the power
that the Intelli) debugger does:

= Setting breakpoints
= Stepping through lines of code

= Examining the values of variables at run time
= [t supports C, C++, Objective-C, Java, and other languages

= Cdoesn't run in a virtual machine

= To use GDB, you have to compile your program in a way that
adds special debugging information to the executable

= To do so, add the —ggdb flag to your compilation

gcec —ggdb program.c —o program

= Note: You will not need to do this on this week's lab

= GDB can step through lines of source code, but it cannot
magically reconstruct the source from the file

= |[f you want to step through lines of code, you need to have
the source code file in the same directory as the executable
where you're running GDB

= The easiest way to run GDB is to have it start up a program
= Assuming your executable is called program, you might do it like
this:

gdb ./program

= Itis also possible to attach GDB to a program that is running
already, but you have to know its PID

= You can also run GDB on a program that has died, using the core
file (which is why they exist)

Basic GDB commands

run

list 135

list function
print variable
backtrace
break 29
break function
continue

next

step
quit

' H +H R

bt

o

Start the program running

List the code near line 135

List the code near the start of function ()

Print the value of an expression

List a stack trace

Set a breakpoint on line 29

Set a breakpoint at the start of function ()
Start running again after stopping at a breakpoint
Execute next line of code, skipping over a function
Execute next line of code, stepping into a function

Quit using GDB

= Set breakpoints before running the code
= The print command is absurdly powerful

= You cantypeprint x = 10, and it will setthe value of xto 10

= This kind of manipulation will be key to solving the next lab
= For more information, use the help command in GDB

= You can also list your breakpoints by typing info
breakpoints

Structs

= AstructinCis:

= A collection of one or more variables
= Possibly of different types

= Grouped together for convenient handling.
= They were called records in Pascal
= They have similarities to classes in Java

= Except all fields are public and there are no methods
= Struct declarations are usually global

= They are outside of main () and often in header files

};

struct name
{

ltxgel‘
{tzgez‘

memberl ;

memberZ2 ;

}the3|

member3;

= Some data is naturally grouped together

= For example, a roster of students where each student has a
name, GPA, ID number

= You could keep an array of strings, double values, and int
values that corresponded to each other

= But then sorting by GPA would mean moving values in three
different arrays

= Also, we'll need structs for linked lists and trees

Java examples

= In Java, a struct-like class would be used to group some data
conveniently

= Examples:
A class to hold a point in space A class to hold student data
public class Point public class Student
{ private double x; { private String name;

private double GPA;
private int ID;

// Constructor

// Methods

private double y;
// Constructor
// Methods

= The C equivalents are similar

= Just remember to put a semicolon after the struct declaration
= Astring can either be a char* (the memory for it is allocated elsewhere)
or a char array with a maximum size
= Examples:

A struct to hold a point in space

A struct to hold student data

struct point

{

double x;
double y;

};

struct student

{
char name[100];
double GPA;
int ID;

™\ A~ -~] X - R n s gl w2 s » - ﬂ |
Jeciaring a struct

= Type:
= struct
= The name of the struct

= The name of the identifier
= You have to put struct first!

struct student bob;
struct student jameel;
struct point start;
struct point end;

Once you have a struct variable, you can access its members
with dot notation (variable.member)

* Members can be read and written

struct student bob;

strcpy (bob.name, "Bob Blobberwob") ;
bob.GPA = 3.7;

bob.ID = 100008;

printf ("Bob's GPA: %$f\n", bob.GPA) ;

Upcoming

= More on structs
= String to integer conversion

= Keep working on Project 4
= Read K&R chapter 6

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Example
	Debugging
	printf() debugging
	Problems with printf()
	Another approach
	Redirecting streams
	Newline
	GDB
	GDB
	Prerequisites
	Source code
	Starting GDB
	Basic GDB commands
	GDB tips
	Structs
	Structs
	Anatomy of a struct
	Why should we bother?
	Java examples
	C examples
	Declaring a struct variable
	Accessing members of a struct
	Upcoming
	Next time…
	Reminders

