
Week 8 - Monday

 What did we talk about last time?
 Allocating multidimensional arrays
 Memory allocation from the system perspective
 Random numbers

...One had always assumed there would be no particular difficulty
in getting programs right. I can remember the exact instant in
time at which it dawned on me that a great part of my future life
would be spent finding mistakes in my own programs.

Maurice Wilkes
Father of EDSAC
The first fully operational computer with its own memory

 Dynamically allocate an 8 × 8 array of char values
 Loop through each element in the array
 With 1/8 probability, put a 'Q' in the element, representing a queen
 Otherwise, put a ' ' (space) in the element

 Print out the resulting chessboard
 Use | and – to mark rows and columns

 Print out whether or not there are queens that can attack each
other

 A time-honored technique for debugging is inserting print
statements into the code

int i = 0;
int count = 0;
for (i = 1 ; i <= 100; ++i); // Mistake
{

printf ("i: %d\n", i); // See what's up
count += i;

}
printf ("%d\n", count);

 Using print statements can be a useful technique
 However
 Be sure not to actually change the state of the program with an i++

or other assignment inside the printf()
 It may not be available in some GUI programs or in deep systems

programming
 It might mess up the output of your program
 Remember to remove your debug statements before turning in your

code

 It turns out that there are two kinds of output to the terminal
 stdout (where everything has gone so far)
 stderr (which also goes to the screen, but can be redirected to

a different place)
 The easiest way to use stderr is with fprintf(), which

can specify where to print stuff

fprintf (stderr, "Going to stderr!\n");
printf ("Going to stdout!\n");

 When you redirect stdout, stderr still goes to the screen

 This will be incredibly useful for debugging Project 4
 If you want to redirect stderr to a file, you can do that as

well with 2>

./program > out.file
This stderr output still shows up.

./program > out.file 2> error.log

 Whether using stderr or stdout, it's critical that you use a
newline (\n) to flush your output
 Otherwise, the program crash might happen before your output is

seen
 printf() uses a buffer, but the newline guarantees that the

output will be put on screen

int* pointer = NULL;
printf ("Made it here!"); // Not printed
*pointer = 42; // Crash!

 GDB (the GNU Debugger) is a debugger available on Linux
and Unix systems

 It is a command line utility, but it still has almost all the power
that the IntelliJ debugger does:
 Setting breakpoints
 Stepping through lines of code
 Examining the values of variables at run time

 It supports C, C++, Objective-C, Java, and other languages

 C doesn't run in a virtual machine
 To use GDB, you have to compile your program in a way that

adds special debugging information to the executable
 To do so, add the -ggdb flag to your compilation

 Note: You will not need to do this on this week's lab

gcc –ggdb program.c –o program

 GDB can step through lines of source code, but it cannot
magically reconstruct the source from the file

 If you want to step through lines of code, you need to have
the source code file in the same directory as the executable
where you're running GDB

 The easiest way to run GDB is to have it start up a program
 Assuming your executable is called program, you might do it like

this:

 It is also possible to attach GDB to a program that is running
already, but you have to know its PID

 You can also run GDB on a program that has died, using the core
file (which is why they exist)

gdb ./program

Command Shortcut Description

run r Start the program running

list 135 l List the code near line 135

list function l List the code near the start of function()

print variable p Print the value of an expression

backtrace bt List a stack trace

break 29 b Set a breakpoint on line 29

break function b Set a breakpoint at the start of function()

continue c Start running again after stopping at a breakpoint

next n Execute next line of code, skipping over a function

step s Execute next line of code, stepping into a function

quit q Quit using GDB

 Set breakpoints before running the code
 The print command is absurdly powerful
 You can type print x = 10, and it will set the value of x to 10
 This kind of manipulation will be key to solving the next lab

 For more information, use the help command in GDB
 You can also list your breakpoints by typing info
breakpoints

 A struct in C is:
 A collection of one or more variables
 Possibly of different types
 Grouped together for convenient handling.

 They were called records in Pascal
 They have similarities to classes in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files

struct name
{

type1 member1;
type2 member2;
type3 member3;
...

};

 Some data is naturally grouped together
 For example, a roster of students where each student has a

name, GPA, ID number
 You could keep an array of strings, double values, and int

values that corresponded to each other
 But then sorting by GPA would mean moving values in three

different arrays
 Also, we'll need structs for linked lists and trees

 In Java, a struct-like class would be used to group some data
conveniently

 Examples:

public class Point
{

private double x;
private double y;
// Constructor
// Methods

}

public class Student
{

private String name;
private double GPA;
private int ID;
// Constructor
// Methods

}

A class to hold a point in space A class to hold student data

 The C equivalents are similar
 Just remember to put a semicolon after the struct declaration

 A string can either be a char* (the memory for it is allocated elsewhere)
or a char array with a maximum size

 Examples:

struct point
{

double x;
double y;

};

struct student
{

char name[100];
double GPA;
int ID;

};

A struct to hold a point in space A struct to hold student data

 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first!

struct student bob;
struct student jameel;
struct point start;
struct point end;

 Once you have a struct variable, you can access its members
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);

 More on structs
 String to integer conversion

 Keep working on Project 4
 Read K&R chapter 6

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Example
	Debugging
	printf() debugging
	Problems with printf()
	Another approach
	Redirecting streams
	Newline
	GDB
	GDB
	Prerequisites
	Source code
	Starting GDB
	Basic GDB commands
	GDB tips
	Structs
	Structs
	Anatomy of a struct
	Why should we bother?
	Java examples
	C examples
	Declaring a struct variable
	Accessing members of a struct
	Upcoming
	Next time…
	Reminders

